Enhanced performance of amine and thiol chemically modified graphene oxide for effective removal of Hg(II), Pb(II), and Cr(VI) from aqueous solution

Author:

Bakry Ayyob M.,Alamier Waleed M.,Abdallah A. B.,El-Reash Yasmeen G. Abou,El-Shall M. Samy,Awad Fathi S.ORCID

Abstract

AbstractThis study describes a novel adsorbent with a multidentate ligand that was facilely fabricated by covalently bonding 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole on graphene oxide (AHMT-PRGO). The AHMT-PRGO nano-adsorbent was used for the effective removal of Hg(II), Pb(II), and Cr(VI) from wastewater. The AHMT-PRGO nano-adsorbent was synthesized by a nucleophilic substitution reaction between GO acyl chloride and AHMT chelating ligand in the presence of tetrabutyl-ammonium bromide as a catalyst. The successful modifications were confirmed via several spectroscopic and electron microscopy instrumentations including UV–Vis, FTIR, Raman, XRD, XPS, SEM, and TEM. The maximum adsorption capacities of Hg(II), Cr(VI), and Pb(II) on the AHMT-PRGO nano-adsorbent were 370.0, 136.2, and 109.6 mg/g, respectively, exceeding those of most previously reported adsorbents. Additionally, the equilibrium contact times for Hg(II), Pb(II), and Cr(VI) were 60, 30, and 400 min, respectively. In a mixture of nine heavy metal ions containing 250 ppm of each ion, the AHMT-PRGO nano-adsorbent exhibited high selectivity for Hg(II) ions. Furthermore, the AHMT-PRGO nano-adsorbent showed high stability over five adsorption–desorption cycles. Additionally, the AHMT-PRGO nano-adsorbent was successfully applied to remove heavy metal ions from real water samples. The novelty of AHMT-PRGO lies in the combination of a multidentate ligand for strong and selective binding with the high surface area and stability offered by covalently bonded graphene oxide. This combination offers potential advantages over traditional adsorbents in terms of adsorption capacity, selectivity, and reusability.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3