Mitigation of groundwater iron-induced clogging by low-cost bioadsorbent in open loop geothermal heat pump systems

Author:

Fujita Claudia,Akhtar M. Shahbaz,Hidaka Ray,Nishigaki Makoto

Abstract

AbstractGreen energy production from natural resources can reduce emissions of greenhouse gases and pollutants from burning of fossil fuels in power plants. Recently, groundwater geothermal energy (GGE) is harnessed by deploying closed- and open-loop heat systems. In open-loop geothermal heat pump systems (OLGHPS), groundwater is reinjected into aquifer after harnessing GGE. Nevertheless, OLGHPS face noxious clogging issue because of elusive chemistry (corrosion or precipitation) of chemical species, principally of iron (Fe), in pipes and aquifers during reinjection process via oxidation reactions. Plethora of filtering materials are available for removal of ions, but these are quite expensive and environmentally unsafe. More recently, low-cost, eco-friendly, green filtering materials gain much interest. These materials can remove ions from groundwater that can minimize clogging in heat exchange systems, injection wells, and aquifer. In the present study, three filtering materials, i.e., wooden charcoal (biomaterial), yamazuna fine sand, and volcanic ash, were tested to estimate their Fe removal capacity. In upward flow mode with minimum oxygen-water contact, serial column (each with 6 ports) experiments were conducted under constant pressure head and constant velocity conditions. Columns were connected to well water having dissolved Fe concentration of 10.85 mg L−1. Sampling was done at the well, column inlets, column’s six sampling ports and column outlets, and samples were analyzed for Fe by atomic absorption spectroscopy. Related tested parameters include pH, EC, temperature, turbidity, porosity, particle diameter, and dissolved oxygen. Volcanic ash showed less Fe removal, while sand filter showed substantial reduction in velocity. Biomaterial (wooden charcoal) displayed higher Fe adsorption capacity compared to other materials that can be ascribed to its surface chemistry and functional groups. Under different flow rates, maximum Fe content of 3.5 g Fe kg−1 dry charcoal was obtained. By considering a safety factor and influence of groundwater composition, it is possible to design a biomaterial-based iron filter system to minimize Fe-induced chemical clogging in OLGHPS which is an eco-friendly, green energy source.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

Reference62 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3