Efficient removal of 2-chlorophenol from aqueous solution using TiO2 thin films/alumina disc as photocatalyst by pulsed laser deposition

Author:

Shah S. Ismat,Mahmoud Sawsan A.ORCID,Bendary Samar H.,Aboulgheit Ahmed K.,Salem A. A.,Fouad Osama A.

Abstract

AbstractPulsed laser deposition facilitates the epitaxial deposition and growth of TiO2 at low temperature on hot substrate. In this study, nanosized nitrogen-doped TiO2 thin films were deposited on fabricated alumina disc-shaped and glass substrates. Textural properties of the fabricated disc and alumina disc-supported TiO2 were investigated using N2 adsorption–desorption isotherms, field emission scanning electron microscopy (FESEM), X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy. FESEM showed the presence of single crystals of TiO2 on the alumina disc. FTIR showed the presence of octahedral TiO2 and different hydroxyl groups on the surface which is responsible for the photoactivity and also showed the functional groups adsorbed on the catalyst surface after the photocatalytic degradation. The concentration of 2-chlorophenol and the photo-redox intermediate products as a function of irradiation time was determined. The concentration of the produced chloride ion during the photocatalytic degradation was determined by an ion chromatography. The results showed that the photocatalytic activity of the catalyst decreased upon cycling. The obtained results were compared with nanostructured TiO2 supported on glass substrate. Higher efficiency of 100% degradation was achieved for TiO2/Al2O3 catalyst, whereas about 70% degradation of 2-CP was achieved using TiO2/glass. Different photointermediates of 2-CP degradation have been identified for each cycle. The difference of intermediates is supported by the adsorbed fragments on the catalyst surface.

Funder

National Science Foundation NSF

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3