Geophysical assessment of seawater intrusion: the Volturno Coastal Plain case study

Author:

Tarallo D.ORCID,Alberico I.ORCID,Cavuoto G.ORCID,Pelosi N.ORCID,Punzo M.ORCID,Di Fiore V.ORCID

Abstract

AbstractIn coastal alluvial plains, the variability of sedimentary inputs, tectonic and eustatism causes a complex subsurface geology which influences the position of fresh/saltwater interface. Furthermore, in these areas densely populated, the over-pumping of freshwater, coupled with the climate change events, promotes the landward migration of freshwater/saltwater boundary. This research illustrates the ability of geophysical tools to recognize the presence of salt/brackish water at Volturno Coastal Plain, Southern Italy. This area is characterized by a peculiar geological setting, due to the proximity at Somma–Vesuvio and Campi Flegrei volcanic areas, which profoundly influences the circulation of groundwater. The subsurface is mainly characterized by: (i) two denser layers located at − 10 m and − 20 m depth which in part prevents the vertical migration of groundwater, (ii) facies heteropy that facilitates the hydraulic connection between the different geological bodies, (iii) a discontinuous Campanian Ignimbrite deposits which favor the hydraulic connection between deeper and shallower aquifers. In this geological framework, 2D-ERT and 3D-ERT integrated with Downhole, Multichannel Analysis of Surface Waves and boreholes made possible to recognize the presence of two main zones with salt and brackish waters, respectively. The first zone, characterized by very low resistivity (≤ 1 Ωm) typical of salt water, stretches 1.5 km inland from the coast. The second zone, with a resistivity between 2 and 5 Ωm typical of brackish water, continues for other 3 km inland. This knowledge is useful for the engagement of all stakeholders (farmers, ranchers and policy makers) in the sustainable use of fresh water and for making water management plan operational tools.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3