Advanced porous covalent organic framework (COF) materials for the capture of alizarin dye and its derivatives from the aquatic environment

Author:

Nakhaei Alireza,Raissi Heidar,Farzad Farzaneh

Abstract

AbstractThe effective removal of dye pollutants from water and wastewater is a key environmental challenge. The present study is developed to investigate alizarin (ALI) dye and its derivations, including Alizarin blue (ABL), Alizarin purpurin (APU), Quinalizarin (AQU), Alizarin cyanin (ACY), and Alizarin Red S (ARS) removal process from water and wastewater sources, using covalent organic frameworks (COFs) nanoadsorbents. Herein, we explore the process of how dye molecules are absorbed onto COFs with precise supramolecular structures. The molecular dynamics (MD) and well-tempered metadynamics (WTMtD) simulations are used to investigate this process in aqueous solution. From the results obtained, it is clear that the intermolecular van der Waals (vdw) and π-π interactions have a significant role on accelerating the interaction between dye molecules and the COF nanostructures. This ultimately leads to the creation of a stable dye-COF complex. The dye-adsorbent average interaction energy value reaches around APU-COF1=−604.34, AQU-COF1=-515.25, ABL-COF1=−504.74, ALI-COF1=−489.48, ARS-COF1=−475.81, ACY-COF1=−273.82, AQU-COF2=−459.76, ALI-COF2=−451.46, ABL-COF2=−405.90, APU-COF2=−367.55, ACY-COF2=−287.89, ARS-COF2=−210.63 kJ/mol for dye/COF1 and dye/COF2 complexes, respectively. The primary interaction between dye and COFs is attributed to the Lennard-Jones term, resulting from the formation of a strong π-π interaction between the dye molecules and the surface of the adsorbent. Overall, our simulations confirmed that the COF1 nanostructure is more effective than the COF2 nanostructure in removing alizarin dye and its derivatives. In this study, not only the performance of two COFs in removing alizarin dye and its derivatives has been compared, but also the possibility of removing alizarin dye and its derivatives with both COFs has been examined.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3