Dissociation of liner from cup in THA: does liner damage affect the risk of dissociation?

Author:

Beckmann Nicholas Andreas,Schonhoff Mareike,Bastian Johannes Dominik,Renkawitz Tobias,Jaeger Sebastian

Abstract

Abstract Introduction A rare catastrophic failure of modular component Total Hip Arthroplasty is dissociation between liner and cup, which has been associated with component malposition and/or impingement and seems to be more frequently associated with the Pinnacle system. The goal of this study was to evaluate the resistance of a polyethylene liner to lever-out-forces of the Pinnacle locking mechanism and the locking mechanisms of two other current cup/liner systems using a standardized testing method (ASTM). Materials and methods Five of each of the following cups were evaluated with their corresponding polyethylene liners: Pinnacle Multihole cup with and without intact anti-rotation tabs (ART’s); Allofit-S-Alloclassic and Plasmafit Plus7 cups. The ASTM test set-up was used to evaluate the lever-out force resulting in liner dissociation for each construct. Results The Pinnacle construct with intact ARTs required the greatest force (F) to achieve dissociation (263.2 ± 79.2 N) followed by the Plasmafit Plus7 (185.8 ± 36.9 N) and the Allofit-S (101.4 ± 35.3 N) constructs, respectively. However, after removal of the ARTs, the Pinnacle system required the least force to achieve dissociation (75.1 ± 22.2 N) (p < 0.001). Conclusions The intact Pinnacle system appeared the most stable in lever-out tests when compared to the other systems. However, after removal of the ARTs, the Pinnacle system required the least force for dissociation, consistent with locking mechanism failure, and suggesting that the ARTs are a critical component of the locking mechanism. Our findings are consistent with the clinical experience of dissociated Pinnacle constructs displaying damaged or missing ARTs, and that damage to these may increase risk of liner dissociation.

Funder

Medizinische Fakultät Heidelberg der Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,General Medicine,Surgery,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3