Author:
Bierbrauer Jürgen,Van Trung Tran
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Reference8 articles.
1. Beth, T. Jungnickel, D. and Lenz, H., Design Theory, Mannheim-Wien-Zürich: Bibl. Institut, 1985.
2. Bierbrauer, J. and van Trung, Tran, Halving PGL(2, 2% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttL% earyqr1ngBPrgaiuaacqWFsgWGaaa!3FBE!\[f\]), % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttL% earyqr1ngBPrgaiuaacqWFsgWGaaa!3FBE!\[f\] odd: a series of cryptocodes, Designs, Codes and Cryptography, 1: 141?148, 1991.
3. Cameron, Peter J., 1988. Geometric sets of permutations, Geometriae Dedicata 25, 339?351.
4. Kantor, W.M. 1972. On incidence matrices of finite projective planes and affine spaces, Mathematische Zeitschrift 124: 315?318.
5. O'Nan, M.E. 1985. Sharply 2-transitive sets of permutations, Proc. Rutgers Group Theory Year 1983?1984 (ed. M. Aschbacher et. al), Cambridge: Cambridge Universities Press.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Latin Matchings and Ordered Designs OD(n−1, n, 2n−1);Mathematics;2022-12-11
2. Large sets with multiplicity;Designs, Codes and Cryptography;2021-05-20
3. Combinatorial Designs for Authentication and Secrecy Codes;Foundations and Trends® in Communications and Information Theory;2008
4. Halving PSL(2,q);Journal of Geometry;1999-03
5. Some t-Homogeneous Sets of Permutations;Codes, Designs and Geometry;1996