Abstract
AbstractIn this note, it is proved the existence of a $$\mathfrak {c}$$
c
-dimensional vector space of real-entire functions all of whose nonzero members are non-integrable in the sense of Lebesgue but yet their two iterated integrals exist as real numbers and coincide. Moreover, it is shown that this vector space can be chosen to be dense in the space of all real $$C^\infty $$
C
∞
-functions on the plane endowed with the topology of uniform convergence on compacta for all derivatives of all orders. If the condition of being entire is dropped, then a closed infinite dimensional subspace satisfying the same properties can be obtained.
Funder
Junta de Andalucía
Ministerio de Ciencia, Innovación y Universidades
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. Aron, R., Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Lineability: The Search for Linearity in Mathematics. Monographs and Research Notes in Mathematics. Chapman & Hall/CRC, Boca Raton (2016)
2. Bernal-González, L., Calderón-Moreno, M.C.: Anti-Fubini and pseudo-Fubini functions. Rev. Real Acad. Cien. Ex. Fís. Nat. Ser. A Mat. 115, 127 (2021)
3. Bernal-González, L., Calderón-Moreno, M.C., Jung, A.: Real-analytic nonintegrable functions with equal iterated integrals. Res. Math. 77, 30 (2022). https://doi.org/10.1007/s00025-021-01571-7
4. Carleman, T.: Sur un théorème de Weierstrass. Ark. Mat. Astronom. Fys. 20B, 1–5 (1927)
5. Cartan, H.: Théorie élémentaire des Fonctions Analytiques d’une ou Plusieurs Variables Complexes, 6th edn. Hermann, Paris (1997)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献