Abstract
AbstractWe extend some results on almost Gorenstein affine monomial curves to the nearly Gorenstein case. In particular, we prove that the Cohen–Macaulay type of a nearly Gorenstein monomial curve in $${\mathbb {A}}^4$$
A
4
is at most 3, answering a question of Stamate in this particular case. Moreover, we prove that, if $${\mathcal {C}}$$
C
is a nearly Gorenstein affine monomial curve that is not Gorenstein and $$n_1, \dots , n_{\nu }$$
n
1
,
⋯
,
n
ν
are the minimal generators of the associated numerical semigroup, the elements of $$\{n_1, \dots , \widehat{n_i}, \dots , n_{\nu }\}$$
{
n
1
,
⋯
,
n
i
^
,
⋯
,
n
ν
}
are relatively coprime for every i.
Funder
Istituto Nazionale di Alta Matematica ”Francesco Severi”
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Barucci, V., Dobbs, D.E., Fontana, M.: Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domain. Mem. Am. Math. Soc. 125, 598 (1997)
2. Barucci, V., Fröberg, R.: One-dimensional almost Gorenstein rings. J. Algebra 188, 418–442 (1997)
3. Bresinsky, H.: Symmetric semigroups of integers generated by 4 elements. Manuscr. Math. 17, 205–219 (1975)
4. Delgado, M.: Conjecture of Wilf: a survey, in numerical semigroups—IMNS 2018. Springer INdAM Ser. 40, 39–62 (2020)
5. Delgado, M., García-Sánchez, P.A.: J. Morais, NumericalSgps, a package for numerical semigroups, GAP package, Version 1.2.1 (2019)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献