Isolation of Regular Graphs and k-Chromatic Graphs

Author:

Borg Peter

Abstract

AbstractGiven a set $${\mathcal {F}}$$ F of graphs, we call a copy of a graph in $${\mathcal {F}}$$ F an $${\mathcal {F}}$$ F -graph. The $${\mathcal {F}}$$ F -isolation number of a graph G, denoted by $$\iota (G,{\mathcal {F}})$$ ι ( G , F ) , is the size of a smallest set D of vertices of G such that the closed neighborhood of D intersects the vertex sets of the $${\mathcal {F}}$$ F -graphs contained by G (equivalently, $$G - N[D]$$ G - N [ D ] contains no $${\mathcal {F}}$$ F -graph). Thus, $$\iota (G,\{K_1\})$$ ι ( G , { K 1 } ) is the domination number of G. For any integer $$k \ge 1$$ k 1 , let $${\mathcal {F}}_{1,k}$$ F 1 , k be the set of regular graphs of degree at least $$k-1$$ k - 1 , let $${\mathcal {F}}_{2,k}$$ F 2 , k be the set of graphs whose chromatic number is at least k, and let $${\mathcal {F}}_{3,k}$$ F 3 , k be the union of $${\mathcal {F}}_{1,k}$$ F 1 , k and $${\mathcal {F}}_{2,k}$$ F 2 , k . Thus, k-cliques are members of both $${\mathcal {F}}_{1,k}$$ F 1 , k and $${\mathcal {F}}_{2,k}$$ F 2 , k . We prove that for each $$i \in \{1, 2, 3\}$$ i { 1 , 2 , 3 } , $$\frac{m+1}{{k \atopwithdelims ()2} + 2}$$ m + 1 k 2 + 2 is a best possible upper bound on $$\iota (G, {\mathcal {F}}_{i,k})$$ ι ( G , F i , k ) for connected m-edge graphs G that are not k-cliques. The bound is attained by infinitely many (non-isomorphic) graphs. The proof of the bound depends on determining the graphs attaining the bound. This appears to be a new feature in the literature on isolation. Among the result’s consequences are a sharp bound of Fenech, Kaemawichanurat, and the present author on the k-clique isolation number and a sharp bound on the cycle isolation number.

Funder

University of Malta

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3