Abstract
AbstractLet f be analytic in $$\mathbb {D}=\{z\in \mathbb {C}:|z|<1\}$$
D
=
{
z
∈
C
:
|
z
|
<
1
}
, and be given by $$f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$$
f
(
z
)
=
z
+
∑
n
=
2
∞
a
n
z
n
. We give sharp bounds for the second Hankel determinant, some Toeplitz, and some Hermitian-Toeplitz determinants of functions in the class of Ozaki close-to-convex functions, together with a sharp bound for the Zalcman functional $$J_{2,3}(f).$$
J
2
,
3
(
f
)
.
Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Abu Muhanna, Y., Li, L., Ponnusamy, S.: Extremal problems on the class of convex functions of order $$-1/2$$. Arch. Math. (Basel) 103(6), 461–471 (2014)
2. Ali, Md Firoz, Thomas, D.K., Allu, V.: Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull. Aust. Math. Soc. 97(2), 253–264 (2018)
3. Allu, V., Thomas, D.K., Tuneski, N.: On Ozaki Close-to-convex functions. Bull. Aust. Math. Soc. 99, 89–100 (2019)
4. Babalola, K.O.: On $$H_3(1)$$ Hankel determinant for some classes of univalent functions. Inequality Theory Appl 6, 1–7 (2010)
5. Bansal, D., Maharana, S., Prajpat, J.K.: Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 52(6), 1139–1148 (2015)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献