Author:
Catino Francesco,Mazzotta Marzia,Stefanelli Paola
Abstract
AbstractWe prove that any set-theoretic solution of the Yang–Baxter equation associated with a dual weak brace is a strong semilattice of non-degenerate bijective solutions. This fact makes use of the description of any dual weak brace S we provide in terms of strong semilattice Y of skew braces $$B_\alpha $$
B
α
, with $$\alpha \in Y$$
α
∈
Y
. Additionally, we describe the ideals of S and study its nilpotency by correlating it to that of each skew brace $$B_\alpha $$
B
α
.
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Ballester-Bolinches, A., Esteban-Romero, R., Jiménez-Seral, P., Pérez-Calabuig, V.: Soluble skew left braces and soluble solutions of the Yang-Baxter equation. arxiv:2304.13475
2. Bardakov, V.G., Gubarev, V.: Rota–Baxter groups, skew left braces, and the Yang–Baxter equation. J. Algebra 596, 328–351 (2022). https://doi.org/10.1016/j.jalgebra.2021.12.036
3. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972). https://doi.org/10.1016/0003-4916(72)90335-1
4. Bonatto, M., Jedlička, P.: Central nilpotency of skew braces. J. Algebra Appl. 22(12), 2350255, 16 (2023). https://doi.org/10.1142/S0219498823502559
5. Bourn, D., Facchini, A., Pompili, M.: Aspects of the category SKB of skew braces. Commun. Algebra 51(5), 2129–2143 (2023). https://doi.org/10.1080/00927872.2022.2151609