Double forms: Regular elliptic bilaplacian operators

Author:

Kupferman Raz,Leder Roee

Abstract

AbstractDouble forms are sections of the vector bundles $$\Lambda^{k}T^{\ast}{\cal{M}}\otimes\Lambda^{m}T^{\ast}\cal{M}$$ Λ k T M Λ m T M , where in this work ($$\cal{M},\frak{g}$$ M , g ) is a compact Riemannian manifold with boundary. We study graded second-order differential operators on double forms, which are used in physical applications. A combination of these operators yields a fourth-order operator, which we call a double bilaplacian. We establish the regular ellipticity of the double bilaplacian for several sets of boundary conditions. Under additional conditions, we obtain a Hodge-like decomposition for double forms, whose components are images of the second-order operators, along with a biharmonic element. This analysis lays foundations for resolving several topics in incompatible elasticity, most prominently the existence of stress potentials and Saint-Venant compatibility.

Publisher

Springer Science and Business Media LLC

Reference24 articles.

1. G. B. Airy, On the strains in the interior of beams, Phil. Trans. Roy. Soc. London 153 (1863), 49–80.

2. E. Beltrami, Osservazioni sulla nota precedente, Atti Real Accad. Naz. Lincei Rend. 5 (1892), 141–142.

3. E. Calabi, On compact, Riemannian manifolds with constant curvature. I, in Proceedings of Symposia in Pure Mathematics. vol. III, American Mathematical Society, Providence, RI, 1961, pp. 155–180.

4. G. de Rham, Differentiable Manifolds, Springer, Berlin, 1984.

5. J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, American Mathematical Society, Providence, RI, 1983.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3