Distinct Communities and Differing Dispersal Routes in Bacteria and Fungi of Honey Bees, Honey, and Flowers

Author:

Tiusanen Mikko,Becker-Scarpitta Antoine,Wirta Helena

Abstract

AbstractMicrobiota, the communities of microbes on and in organisms or organic matter, are essential for the functioning of ecosystems. How microbes are shared and transmitted delineates the formation of a microbiota. As pollinators forage, they offer a route to transfer microbes among the flowering plants, themselves, and their nests. To assess how the two components of the microbiota, bacteria and fungi, in pollination communities are shared and transferred, we focused on the honey bee Apis mellifera and collected honey bee, honey (representing the hive microbiota), and flower samples three times during the summer in Finland. We identified the bacteria and fungi by DNA metabarcoding. To determine the impact of honey bees’ flower choices on the honey bee and hive microbiota, we identified also plant DNA in honey. The bacterial communities of honey bees, honey, and flowers all differ greatly from each other, while the fungal communities of honey bees and honey are very similar, yet different from flowers. The time of the summer and the sampling area influence all these microbiota. For flowers, the plant identity impacts both bacterial and fungal communities’ composition the most. For the dispersal pathways of bacteria to honey bees, they are acquired directly from the honey and indirectly from flowers through the honey, while fungi are directly transmitted to honey bees from flowers. Overall, the distinctiveness of the microbiota of honey bees, honey, and the surrounding flowers suggests the sharing of microbes among them occurs but plays a minor role for the established microbiota.

Funder

Koneen Säätiö

University of Helsinki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3