Effects of B-azolemiteacrylic on life-history traits and demographic parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae)

Author:

Shang SuqinORCID,Chang Yun,Li Wei-Zhen,Chang-Qing Wang,Peng-Cheng Nie

Abstract

AbstractThe present study was conducted to evaluate sublethal effects of B-azolemiteacrylic on the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Female adults of T. urticae were exposed to LC10 and LC30 of the acaricide, and the effects on treated females and their offspring were evaluated. The results showed that the fecundity of F0 female adults treated with LC10 and LC30 of B-azolemiteacrylic was reduced by 30.9 and 39.2%, respectively. Longevity and oviposition period of the females were significantly reduced as well. The developmental duration of egg and deutonymph stage of the F1 generation were not significantly different from that of the control. The protonymph stage after LC30 treatment lasted significantly longer, whereas the larva, deutonymph and female stage were significantly shorter than the control. The oviposition period of the F1 generation was significantly shortened, the fecundity of each female decreased significantly, and the ratio of female-to-male was reduced too. Moreover, the average generation period of T. urticae after LC10 and LC30 treatments was shorter than that of the control, and the net production rate (R0), intrinsic rate of increase (rm) and finite rate of increase (λ) were all reduced by 33.3, 7.5 and 1.9% (LC10 treatment) and by 51.3, 14.8 and 3.6% (LC30 treatment), respectively. The population doubling time was prolonged by 7.5 and 14.8% after LC10 and LC30 treatments, respectively, compared with the control. These results indicate that B-azolemiteacrylic may effectively inhibit the development rate of the F0 and F1 populations of T. urticae, which will help design integrated strategies for the comprehensive control of T. urticae and rational use of pesticides in the field.

Funder

key course construction of postgraduate of gansu agricultural university

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3