Creation of an incus recess for a middle-ear microphone using a drill or laser ablation: a comparison of equivalent noise level and middle ear transfer function

Author:

Morse Robert P.ORCID,Mitchell-Innes AlistairORCID,Prokopiou Andreas N.ORCID,Irving Richard M.ORCID,Begg Philip A.ORCID

Abstract

Abstract Purpose Studies have assessed the trauma and change in hearing function from the use of otological drills on the ossicular chain, but not the effects of partial laser ablation of the incus. A study of the effectiveness of a novel middle-ear microphone for a cochlear implant, which required an incus recess for the microphone balltip, provided an opportunity to compare methods and inform a feasibility study of the microphone with patients. Methods We used laser Doppler vibrometry with an insert earphone and probe microphone in 23 ears from 14 fresh-frozen cadavers to measure the equivalent noise level at the tympanic membrane that would have led to the same stapes velocity as the creation of the incus recess. Results Drilling on the incus with a diamond burr created peak noise levels equivalent to 125.1–155.0 dB SPL at the tympanic membrane, whilst using the laser generated equivalent noise levels barely above the baseline level. The change in middle ear transfer function following drilling showed greater variability at high frequencies, but the change was not statistically significant in the three frequency bands tested. Conclusions Whilst drilling resulted in substantially higher equivalent noise, we considered that the recess created by laser ablation was more likely to lead to movement of the microphone balltip, and therefore decrease performance or result in malfunction over time. For patients with greatly reduced residual hearing, the greater consistency from drilling the incus recess may outweigh the potential benefits of hearing preservation with laser ablation.

Funder

NIHR BioResource

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3