A dimensionality reduction approach for convolutional neural networks

Author:

Meneghetti Laura,Demo Nicola,Rozza GianluigiORCID

Abstract

AbstractThe focus of this work is on the application of classical Model Order Reduction techniques, such as Active Subspaces and Proper Orthogonal Decomposition, to Deep Neural Networks. We propose a generic methodology to reduce the number of layers in a pre-trained network by combining the aforementioned techniques for dimensionality reduction with input-output mappings, such as Polynomial Chaos Expansion and Feedforward Neural Networks. The motivation behind compressing the architecture of an existing Convolutional Neural Network arises from its usage in embedded systems with specific storage constraints. The conducted numerical tests demonstrate that the resulting reduced networks can achieve a level of accuracy comparable to the original Convolutional Neural Network being examined, while also saving memory allocation. Our primary emphasis lies in the field of image recognition, where we tested our methodology using VGG-16 and ResNet-110 architectures against three different datasets: CIFAR-10, CIFAR-100, and a custom dataset.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3