Privacy-preserving visual analysis: training video obfuscation models without sensitive labels

Author:

De Coninck SanderORCID,Wang Wei-ChengORCID,Leroux SamORCID,Simoens PieterORCID

Abstract

AbstractVisual analysis tasks, including crowd management, often require resource-intensive machine learning models, posing challenges for deployment on edge hardware. Consequently, cloud computing emerges as a prevalent solution. To address privacy concerns associated with offloading video data to remote cloud platforms, we present a novel approach using adversarial training to develop a lightweight obfuscator neural network. Our method focuses on pedestrian detection as an example of visual analysis, allowing the transformation of video frames on the camera itself to retain only essential information for pedestrian detection while preserving privacy. Importantly, the obfuscated data remains compatible with publicly available object detectors, requiring no modifications or significant loss in accuracy. Additionally, our technique overcomes the common limitation of relying on labeled sensitive attributes for privacy preservation. By demonstrating the inability of pedestrian attribute recognition models to detect attributes in obfuscated videos, we validate the efficacy of our privacy protection method. Our results suggest that this scalable approach holds promise for enabling camera usage in video analytics while upholding personal privacy.

Funder

Bijzonder Onderzoeksfonds UGent

Flanders AI Research Programme

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3