A large-scale dataset for korean document-level relation extraction from encyclopedia texts

Author:

Son Suhyune,Lim Jungwoo,Koo Seonmin,Kim Jinsung,Kim Younghoon,Lim Youngsik,Hyun Dongseok,Lim HeuiseokORCID

Abstract

AbstractDocument-level relation extraction (RE) aims to predict the relational facts between two given entities from a document. Unlike widespread research on document-level RE in English, Korean document-level RE research is still at the very beginning due to the absence of a dataset. To accelerate the studies, we present (Toward Document-Level Relation Extraction in Korean) dataset constructed from Korean encyclopedia documents written by the domain experts. We provide detailed statistical analyses for our large-scale dataset and human evaluation results suggest the assured quality of . Also, we introduce the document-level RE model that considers the named entity-type while considering the Korean language’s properties. In the experiments, we demonstrate that our proposed model outperforms the baselines and conduct qualitative analysis.

Funder

Institute for Information and Communications Technology Planning & Evaluation

Ministry of Science and ICT

ICT Creative Consilience program

Publisher

Springer Science and Business Media LLC

Reference42 articles.

1. Hendrickx I, Kim SN, Kozareva Z, Nakov P, Séaghdha DÓ, Padó S, Pennacchiotti M, Romano L, Szpakowicz S (2010) Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 33–38

2. Shen Y, Huang XJ (2016) Attention-based convolutional neural network for semantic relation extraction. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2526–2536

3. Zhang Y, Zhong V, Chen D, Angeli G, Manning CD (2017) Position-aware attention and supervised data improve slot filling. In: Conference on Empirical Methods in Natural Language Processing

4. Zeng D, Liu K, Lai S, Zhou G, Zhao J (2014) Relation classification via convolutional deep neural network. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 2335–2344. Dublin City University and Association for Computational Linguistics, Dublin, Ireland. https://aclanthology.org/C14-1220

5. Soares LB, FitzGerald N, Ling J, Kwiatkowski T (2019) Matching the blanks: Distributional similarity for relation learning. arXiv:1906.03158

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3