Forecasting the abnormal events at well drilling with machine learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-021-03013-x.pdf
Reference44 articles.
1. Abanda A, Mori U, Lozano JA (2019) A review on distance based time series classification. Data Min Knowl Disc 33(2):378–412
2. Abu-Abed F (2010) Application of neural network modeling tools for analysis of pre-emergency situations on drilling sites. Softw Products Syst 3(3):136–139
3. Abu-Abed F (2015) Automated system for detection of pre-emergency situations at oil and gas industry facilities. Logger 5(251):48–61
4. Ali D, Frimpong S (2020) Artificial intelligence, machine learning and process automation: existing knowledge frontier and way forward for mining sector. Artif Intell Rev 53(8):6025–6042
5. Aljubran M, Ramasamy J, Bassam M, Magana-Mora A (2021) Deep learning and time-series analysis for the early detection of lost circulation incidents during drilling operations. IEEE Access
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Oil and gas flow anomaly detection on offshore naturally flowing wells using deep neural networks;Geoenergy Science and Engineering;2024-11
2. Advancing Drilling Safety: Automated Anomaly Detection in Well Control Using Machine Learning Techniques;SPE Nigeria Annual International Conference and Exhibition;2024-08-05
3. Development of an expert-informed rig state classifier using naive bayes algorithm for invisible loss time measurement;Applied Intelligence;2024-06-11
4. Field Telemetry Drilling Dataset Modeling with Multivariable Regression, Group Method Data Handling, Artificial Neural Network, and the Proposed Group-Method-Data-Handling-Featured Artificial Neural Network;Applied Sciences;2024-03-08
5. USING SUPERVISED MACHINE LEARNING ALGORITHMS FOR KICK DETECTION DURING MANAGED PRESSURE DRILLING;Bulletin of the Tomsk Polytechnic University Geo Assets Engineering;2023-08-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3