Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Pun C, Yuan X, Bi X (2015) Image forgery detection using adaptive over-segmentation and feature point matching. IEEE Trans Inf Forensic Secur 10(8):1705–1716
2. Wu Y, Abd-Almageed W, Natarajan P (2018) BusterNet: Detecting copy-move image forgery with source/target localization. In: European Conference on Computer Vision, pp 168–184
3. Warif N, Idris M, Wahab A et al (2022) A comprehensive evaluation procedure for copy-move forgery detection methods: results from a systematic review. Multimed Tools Appl 81:15171–15203
4. Elaskily M, Dessouky M, Faragallah O et al (2023) A survey on traditional and deep learning copy move forgery detection (CMFD) techniques. Multimed Tools Appl 82:34409–34435
5. Wang Y, Kang X, Chen Y (2020) Robust and accurate detection of image copy-move forgery using PCET-SVD and histogram of block similarity measures. J Inf Secur Appl 54:102536