An efficient algorithm for mining periodic high-utility sequential patterns
Author:
Funder
NAFOSTED
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
http://link.springer.com/article/10.1007/s10489-018-1227-x/fulltext.html
Reference40 articles.
1. Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of the 11th international conference on data engineering, 1995, IEEE, pp 3–14. https://doi.org/10.1109/icde.1995.380415
2. Ahmed CF, Tanbeer SK, Jeong B-S (2010) A novel approach for mining high-utility sequential patterns in sequence databases. ETRI J 32(5):676–686. https://doi.org/10.4218/etrij.10.1510.0066
3. Amphawan K, Lenca P, Surarerks A (2009) Mining top-k periodic-frequent pattern from transactional databases without support threshold. In: Advances in information technology, pp 18–29. https://doi.org/10.1007/978-3-642-10392-6_3
4. Dinh T, Huynh V-N, Le B (2017) Mining periodic high utility sequential patterns. In: Asian conference on intelligent information and database systems. Springer, Berlin, pp 545–555. https://doi.org/10.1007/978-3-319-54472-4_51
5. Dinh T, Quang MN, Le B (2015). In: Proceedings of the sixth international symposium on information and communication technology. ACM, A novel approach for hiding high utility sequential patterns, pp 121–128. https://doi.org/10.1145/2833258.2833271
Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Stable top-k periodic high-utility patterns mining over multi-sequence;Intelligent Data Analysis;2024-07-23
2. Mining Interesting Sequential Patterns using a Novel Balanced Utility Measure;Knowledge-Based Systems;2024-06
3. A survey of high utility sequential patterns mining methods;Journal of Intelligent & Fuzzy Systems;2023-11-04
4. Periodic-confidence: a null-invariant measure to discover partial periodic patterns in non-uniform temporal databases;International Journal of Data Science and Analytics;2023-10-19
5. Mining periodic trends via closed high utility patterns;Expert Systems with Applications;2023-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3