Fusion of overexposed and underexposed images using caputo differential operator for resolution and texture based enhancement

Author:

Zhou Liang,Alenezi Fayadh S.,Nandal Amita,Dhaka Arvind,Wu Tao,Koundal Deepika,Alhudhaif Adi,Polat Kemal

Abstract

AbstractThe visual quality of images captured under sub-optimal lighting conditions, such as over and underexposure may benefit from improvement using fusion-based techniques. This paper presents the Caputo Differential Operator-based image fusion technique for image enhancement. To effect this enhancement, the proposed algorithm first decomposes the overexposed and underexposed images into horizontal and vertical sub-bands using Discrete Wavelet Transform (DWT). The horizontal and vertical sub-bands are then enhanced using Caputo Differential Operator (CDO) and fused by taking the average of the transformed horizontal and vertical fractional derivatives. This work introduces a fractional derivative-based edge and feature enhancement to be used in conjuction with DWT and inverse DWT (IDWT) operations. The proposed algorithm combines the salient features of overexposed and underexposed images and enhances the fused image effectively. We use the fractional derivative-based method because it restores the edge and texture information more efficiently than existing method. In addition, we have introduced a resolution enhancement operator to correct and balance the overexposed and underexposed images, together with the Caputo enhanced fused image we obtain an image with significantly deepened resolution. Finally, we introduce a novel texture enhancing and smoothing operation to yield the final image. We apply subjective and objective evaluations of the proposed algorithm in direct comparison with other existing image fusion methods. Our approach results in aesthetically subjective image enhancement, and objectively measured improvement metrics.

Funder

Foundation of National Key R&D Program of China

National Natural Science Foundation of China

Foundation of Shanghai Municipal Commission of Economy and Informatization

Construction Project of Shanghai Public Health System Construction

DST, New Delhi

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3