1. Xiong Y, Zuo R (2021) A positive and unlabeled learning algorithm for mineral prospectivity mapping. Comput. Geosci 147:104667. https://doi.org/10.1016/j.cageo.2020.104667
2. Gong C, Shi H, Liu T, Zhang C, Yang J, Tao D (2021) Loss decomposition and centroid estimation for positive and unlabeled learning. IEEE Trans Pattern Anal Mach Intell 43(3):918–932. https://doi.org/10.1109/TPAMI.2019.2941684
3. Latulippe M, Drouin A, Giguère P, Laviolette F (2013) Accelerated robust point cloud registration in natural environments through positive and unlabeled learning. In: IJCAI 2013 proceedings of the 23rd international joint conference on artificial intelligence, August 3-9, 2013. http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6848, Beijing, China, pp 2480–2487
4. Scott C, Blanchard G (2009) Novelty detection: Unlabeled data definitely help,. In: Proceedings of the twelfth international conference on artificial intelligence and Statistics, AISTATS 2009, April 16-18 2009. http://proceedings.mlr.press/v5/scott09a.html, Clearwater, Beach, Florida, USA, pp 464–471
5. Liu B, Dai Y, Li X, Lee WS, Yu PS (2003) Building text classifiers using positive and unlabeled examples. In: Proceedings of the 3rd IEEE international conference on data mining (ICDM 2003), 19-22 December 2003. https://doi.org/10.1109/ICDM.2003.1250918, Melbourne, Florida, USA, pp 179–188