Effect of Refresh Time on XeF2 Gas-assisted FIB Milling of GaAs

Author:

Sun Jining,Zhang Lei,Zhang Yi,Han Yunlong,Zhang LeiORCID

Abstract

AbstractFocused ion beam (FIB) machining can be used to fabricate gallium arsenide-based devices, which have a surface finish of several nanometers, and the FIB machining speed and surface finish can be greatly improved using xenon difluoride (XeF2) gas-assisted etching. Although the refresh time is one of the most important parameters in the gas-assisted etching process, its effect on the machining quality of the surface finish has rarely been studied. Therefore, in this work, we investigated the effect of the refresh time on the etching process, including the dissociation process of XeF2, the refresh time dependency of the sputter in yield under different incident angles, and the surface finish under different refresh times. The results revealed that a selective etching mechanism occurred at different refresh times. At an incidence angle of 0°, the sputtering yield increased with the refresh time and reached its maximum value at 500 ms; at an incidence angle of 30°, the sputtering yield reached its minimum value at a refresh time of 500 ms. For surface roughness, the incident angle played a more important role than the refresh time. The surface finish was slightly better at an incidence angle of 30° than at 0°. In addition, both F and Xe elements were detected in the processed area: Xe elements were evenly distributed throughout the processing area, while F elements tended to accumulate in the whole processing area. The results suggest that the optimum surface can be obtained when a larger refresh time is employed.

Funder

Startup funding support by the Dalian University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3