Plowing-Extrusion Processes and Performance of Functional Surface Structures of Copper Current Collectors for Lithium-Ion Batteries

Author:

Wang Chun,Yuan WeiORCID,Chen Yu,Zhao Bote,Tang Yong,Zhang Shiwei,Ding Xinrui,He Jun,Chen Songmao,Pan Baoyou,Chen Mingyue

Abstract

AbstractMost copper current collectors for commercial lithium-ion batteries (LIBs) are smooth copper foils, which cannot form a stable and effective combination with electrode slurry. They are likely to deform or fall off after long-term operation, resulting in a sharp decline in battery performance. What is worse is that this condition inevitably causes internal short circuits and thus brings about security risks. In this study, a process route of fabricating the functional surface structures on the surface of a copper collector for LIBs by twice-crisscross micro-plowing (TCMP) is proposed, which provides a new idea and an efficient method to solve the above problems from the perspective of manufacturing. The finite element simulation of TCMP combined with the cutting force test and morphological characterization is conducted to verify the forming mechanism of the surface structures on a copper sheet and its relationship with the processing parameters. The influence of several key processing parameters on the surface characteristics of the copper sheet is comprehensively explored. A series of functions is tested to obtain the optimal parameters for performance improvement of the current collector. Results show that the structured copper sheet with the cutting distance of 250 μm, cutting depth of 80 μm, and cutting crossing angle of 90° enables the best surface features of the current collector; the contact angle reaches 0°, the slurry retention rate is up to 89.2%, and the friction coefficient reaches 0.074. The battery using the as-prepared structured copper sheet as the current collector produces a specific capacity of 318.6 mAh/g after 50 cycles at a current density of 0.2 C, which is 132.7% higher than the one based on a smooth surface. The capacity reversibility of the sample with the new current collector is much better than that of the traditional samples, yielding a lower impedance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Science and Technology Planning Project of Guangdong Province

S&T Innovation Projects of Zhuhai City

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Materials Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3