Abstract
AbstractWe present a numerical approximation scheme for the Tomita–Takesaki modular operator of local subalgebras in linear quantum fields, working at one-particle level. This is applied to the local subspaces for double cones in the vacuum sector of a massive scalar free field in $$(1+1)$$
(
1
+
1
)
- and $$(3+1)$$
(
3
+
1
)
-dimensional Minkowski spacetime, using a discretization of time-0 data in position space. In the case of a wedge region, one component of the modular generator is well known to be a mass-independent multiplication operator; our results strongly suggest that for the double cone, the corresponding component is still at least close to a multiplication operator, but that it is dependent on mass and angular momentum.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics
Reference21 articles.
1. Bateman, H.: Tables of Integral Transforms. Ed. by A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Vol. I. McGraw-Hill Book Company, Inc., New York-London (1954). ISBN: 07-019549-8
2. Bisognano, J.J., Wichmann, E.H.: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16(4), 985–1007 (1975)
3. Borchers, H.-J.: On revolutionizing quantum field theory with Tomita’s modular theory. J. Math. Phys. 41(6), 3604–3673 (2000)
4. Bostelmann, H., Cadamuro, D., Del Vecchio, S.: Relative entropy of coherent states on general CCR algebras. Commun. Math. Phys. 389(1), 661–691 (2022)
5. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, vol. I. Theoretical and Mathematical Physics, Springer, Berlin (1979) ISBN: 978-3-540-17093-8
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献