Abstract
AbstractThe box–ball system (BBS) is a cellular automaton that is an ultradiscrete analogue of the Korteweg–de Vries equation, a nonlinear PDE used to model water waves. In 2001, Hikami and Inoue generalised the BBS to the general linear Lie superalgebra $$\mathfrak {gl}(m|n)$$
gl
(
m
|
n
)
. We further generalise the Hikami–Inoue BBS to column tableaux using the Kirillov–Reshetikhin crystals for $$\widehat{\mathfrak {gl}}{(m|n)}$$
gl
^
(
m
|
n
)
devised by Kwon and Okado in 2021, where we find similar solitonic behaviour under certain conditions.
Funder
Australian Mathematical Sciences Institute
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics
Reference16 articles.
1. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1989. Reprint of the 1982 original
2. Benkart, G., Kang, S.-J., Kashiwara, M.: Crystal bases for the quantum superalgebra $$U_q(\mathfrak{gl} (m, n))$$. J. Am. Math. Soc. 13(2), 295–331 (2000)
3. Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. Math. 64(2), 118–175 (1987)
4. Fukuda, K., Okado, M., Yamada, Y.: Energy functions in box ball systems. Int. J. Mod. Phys. A 15(9), 1379–1392 (2000)
5. Hatayama, G., Hikami, K., Inoue, R., Kuniba, A., Takagi, T., Tokihiro, T.: The $$A^{(1)}_M$$ automata related to crystals of symmetric tensors. J. Math. Phys. 42(1), 274–308 (2001)