Abstract
AbstractGiven a globally hyperbolic spacetime $$M={\mathbb {R}}\times \Sigma $$
M
=
R
×
Σ
of dimension four and regularity $$C^\tau $$
C
τ
, we estimate the Sobolev wavefront set of the causal propagator $$K_G$$
K
G
of the Klein–Gordon operator. In the smooth case, the propagator satisfies $$WF'(K_G)=C$$
W
F
′
(
K
G
)
=
C
, where $$C\subset T^*(M\times M)$$
C
⊂
T
∗
(
M
×
M
)
consists of those points $$(\tilde{x},\tilde{\xi },\tilde{y},\tilde{\eta })$$
(
x
~
,
ξ
~
,
y
~
,
η
~
)
such that $$\tilde{\xi },\tilde{\eta }$$
ξ
~
,
η
~
are cotangent to a null geodesic $$\gamma $$
γ
at $$\tilde{x}$$
x
~
resp. $$\tilde{y}$$
y
~
and parallel transports of each other along $$\gamma $$
γ
. We show that for $$\tau >2$$
τ
>
2
, $$\begin{aligned} WF'^{-2+\tau -{\epsilon }}(K_G)\subset C \end{aligned}$$
W
F
′
-
2
+
τ
-
ϵ
(
K
G
)
⊂
C
for every $${\epsilon }>0$$
ϵ
>
0
. Furthermore, in regularity $$C^{\tau +2}$$
C
τ
+
2
with $$\tau >2$$
τ
>
2
, $$\begin{aligned} C\subset WF'^{-\frac{1}{2}}(K_G)\subset WF'^{\tau -\epsilon }(K_G)\subset C \end{aligned}$$
C
⊂
W
F
′
-
1
2
(
K
G
)
⊂
W
F
′
τ
-
ϵ
(
K
G
)
⊂
C
holds for $$0<\epsilon <\tau +\frac{1}{2}$$
0
<
ϵ
<
τ
+
1
2
. In the ultrastatic case with $$\Sigma $$
Σ
compact, we show $$WF'^{-\frac{3}{2}+\tau -\epsilon }(K_G)\subset C$$
W
F
′
-
3
2
+
τ
-
ϵ
(
K
G
)
⊂
C
for $$\epsilon >0$$
ϵ
>
0
and $$\tau >2$$
τ
>
2
and $$WF'^{-\frac{3}{2}+\tau -\epsilon }(K_G)= C$$
W
F
′
-
3
2
+
τ
-
ϵ
(
K
G
)
=
C
for $$\tau >3$$
τ
>
3
and $$\epsilon <\tau -3$$
ϵ
<
τ
-
3
. Moreover, we show that the global regularity of the propagator $$K_G$$
K
G
is $$H^{-\frac{1}{2}-\epsilon }_{loc}(M\times M)$$
H
loc
-
1
2
-
ϵ
(
M
×
M
)
as in the smooth case.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC