Assessing the impact of missing data on water quality index estimation: a machine learning approach

Author:

Sierra-Porta David

Abstract

AbstractDespite the regulations and controls implemented worldwide by governments and institutions to ensure the availability and quality of water resources, many water sources remain susceptible to contamination. This contamination poses significant risks to human health and can lead to substantial economic losses. One of the challenges in this context is the presence of missing or incomplete data, which can arise from various factors such as the methodology used or the expertise of personnel involved in sample collection and analysis. The existence of such data gaps hampers the accurate analysis that can be conducted. To address this issue and estimate a water quality index from the available samples, it is crucial to handle missing information appropriately to avoid biased calculations. This study focuses on the application of machine learning methods for imputing missing data in water samples. Furthermore, it quantifies the performance of different models based on the distribution of the obtained data. By applying 10 distinct methods to a sample of water quality data, the most effective approaches, namely Bayesian Ridge, Gradient Boosting, Ridge, Support Vector Machine, and Theil-Sen regressors, were identified. The selection of these models was based on the evaluation of two estimation error metrics: average percent bias (PBIAS) and Kling-Gupta Efficiency statistic (KGEss). The respective metric values for the aforementioned methods are as follows: $$\langle \hbox {PBIAS}\rangle _{0.5}=14.665, 19.555, 14.300, 15.380, 15.920$$ PBIAS 0.5 = 14.665 , 19.555 , 14.300 , 15.380 , 15.920 and $$\langle \hbox {KGEss}\rangle _{0.5}=0.670, 0.585, 0.655, 0.620, 0.595$$ KGEss 0.5 = 0.670 , 0.585 , 0.655 , 0.620 , 0.595 . The results obtained from these models have been utilized to establish unbiased relationships among physical, chemical, and biological parameters based on the information retrieved through the applied imputation methods.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of the Drinking Water Quality Index in Dibis District – Kirkuk;Journal of Environmental Impact and Management Policy;2024-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3