Comprehensive Analysis and Optimization of Dynamic Vibration-Absorbing Structures for Electric Vehicles Driven by In-Wheel Motors

Author:

Qin YechenORCID,Wang Zhenfeng,Yuan Kang,Zhang Yubiao

Abstract

AbstractDistributed-drive electric vehicles (EVs) replace internal combustion engine with multiple motors, and the novel configuration results in new dynamic-related issues. This paper studies the coupling effects between the parameters and responses of dynamic vibration-absorbing structures (DVAS) for EVs driven by in-wheel motors (IWM). Firstly, a DVAS-based quarter suspension model is developed for distributed-drive EVs, from which nine parameters and five responses are selected for the coupling effect analysis. A two-stage global sensitivity analysis is then utilized to investigate the effect of each parameter on the responses. The control of the system is then converted into a multiobjective optimization problem with the defined system parameters being the optimization variables, and three dynamic limitations regarding both motor and suspension subsystems are taken as the constraints. A particle swarm optimization approach is then used to either improve ride comfort or mitigate IWM vibration, and two optimized parameter sets for these two objects are provided at last. Simulation results provide in-depth conclusions for the coupling effects between parameters and responses, as well as a guideline on how to design system parameters for contradictory objectives. It can be concluded that either passenger comfort or motor lifespan can be reduced up to 36% and 15% by properly changing the IWM suspension system parameters.

Funder

Young Scientists Fund

Postdoctoral Research Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Automotive Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3