Soft Sensors for Property-Controlled Multi-Stage Press Hardening of 22MnB5

Author:

Martschin JuriORCID,Wrobel Malte,Grodotzki Joshua,Meurer Thomas,Tekkaya A. Erman

Abstract

AbstractIn multi-stage press hardening, the product properties are determined by the thermo-mechanical history during the sequence of heat treatment and forming steps. To measure these properties and finally to control them by feedback, two soft sensors are developed in this work. The press hardening of 22MnB5 sheet material in a progressive die, where the material is first rapidly austenitized, then pre-cooled, stretch-formed, and finally die bent, serves as the framework for the development of these sensors. To provide feedback on the temporal and spatial temperature distribution, a soft sensor based on a model derived from the Dynamic mode decomposition (DMD) is presented. The model is extended to a parametric DMD and combined with a Kalman filter to estimate the temperature (-distribution) as a function of all process-relevant control variables. The soft sensor can estimate the temperature distribution based on local thermocouple measurements with an error of less than 10 °C during the process-relevant time steps. For the online prediction of the final microstructure, an artificial neural network (ANN)-based microstructure soft sensor is developed. As part of this, a transferable framework for deriving input parameters for the ANN based on the process route in multi-stage press hardening is presented, along with a method for developing a training database using a 1-element model implemented with LS-Dyna and utilizing the material model Mat248 (PHS_BMW). The developed ANN-based microstructure soft sensor can predict the final microstructure for specific regions of the formed and hardened sheet in a time span of far less than 1 s with a maximum deviation of a phase fraction of 1.8 % to a reference simulation.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Dortmund

Publisher

Springer Science and Business Media LLC

Subject

Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3