The value of net influx constant based on FDG PET/CT dynamic imaging in the differential diagnosis of metastatic from non-metastatic lymph nodes in lung cancer

Author:

Wumener Xieraili,Zhang Yarong,Zang Zihan,Ye Xiaoxing,Zhao Jiuhui,Zhao Jun,Liang Ying

Abstract

Abstract Objectives This study aims to evaluate the value of the dynamic and static quantitative metabolic parameters derived from 18F-fluorodeoxyglucose (FDG)–positron emission tomography/CT (PET/CT) in the differential diagnosis of metastatic from non-metastatic lymph nodes (LNs) in lung cancer and to validate them based on the results of a previous study. Methods One hundred and twenty-one patients with lung nodules or masses detected on chest CT scan underwent 18F-FDG PET/CT dynamic + static imaging with informed consent. A retrospective collection of 126 LNs in 37 patients with lung cancer was pathologically confirmed. Static image analysis parameters include LN-SUVmax and LN-SUVmax/primary tumor SUVmax (LN-SUVmax/PT-SUVmax). Dynamic metabolic parameters including the net influx rate (Ki) and the surrogate of perfusion (K1) and of each LN were obtained by applying the irreversible two-tissue compartment model using in-house Matlab software. Ki/K1 was then calculated as a separate marker. Based on the pathological findings, we divided into a metastatic group and a non-metastatic group. The χ2 test was used to evaluate the agreement of the individual and combined diagnosis of each metabolic parameter with the gold standard. The receiver-operating characteristic (ROC) analysis was performed for each parameter to determine the diagnostic efficacy in differentiating non-metastatic from metastatic LNs with high FDG-avid. P < 0.05 was considered statistically significant. Results Among the 126 FDG-avid LNs confirmed by pathology, 70 LNs were metastatic, and 56 LNs were non-metastatic. For ROC analysis, in separate assays, the dynamic metabolic parameter Ki [sensitivity (SEN) of 84.30%, specificity (SPE) of 94.60%, accuracy of 88.89%, and AUC of 0.895] had a better diagnostic value than the static metabolic parameter SUVmax (SEN of 82.90%, SPE of 62.50%, accuracy of 74.60%, and AUC of 0.727) in differentiating between metastatic from non-metastatic LNs groups, respectively. In the combined diagnosis group, the combined SUVmax + Ki diagnosis had a better diagnostic value in the differential diagnosis of metastatic from non-metastatic LNs, with SEN, SPE, accuracy, and AUC of 84.3%, 94.6%, 88.89%, and 0.907, respectively. Conclusions When the cutoff value of Ki was 0.022 ml/g/min, it had a high diagnostic value in the differential diagnosis between metastasis and non-metastasis in FDG-avid LNs of lung cancer, especially in improving the specificity. The combination of SUVmax and Ki is expected to be a reliable metabolic parameter for N-staging of lung cancer.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3