Targeted radioimmunotherapy with the iodine-131-labeled caerin 1.1 peptide for human anaplastic thyroid cancer in nude mice

Author:

Lin Ruoting,Ma Bowei,Liu Na,Zhang Lu,He Tiantian,Liu Xiongying,Chen Tongsheng,Liu Wenjuan,Liang Yongnan,Wang Tianfang,Ni Guoying,Liu Xiaosong,Yang Ning,Zhang Jinhe,Yuan JianweiORCID

Abstract

Abstract Objective The combination of two or more drugs with different mechanisms is a promising strategy for cancer treatment, and radioimmunotherapy (RIT) is a trending antitumor strategy. Radiotherapy (RT) can promote and activate antitumor immune effects, and immunotherapy can strengthen the effects of selective internal radiotherapy (SIRT); the RIT combination is synergistic and can overcome the adverse side effects of monotherapy. In this study, we developed a radioimmunoconjugate (RIC)—the iodine-131 (131I)-labeled caerin 1.1 peptide—to treat human anaplastic thyroid cancer (ATC). Methods Antitumor activity of caerin 1.1 peptide was determined by MTT assay, plate colony formation and cell wound scratch assays, and the mechanism of the inhibition of carein 1.1 peptide on the growth of CAL-62 cells was identified by cell cycle and western blot. Then, we investigated the efficacy of the caerin 1.1 peptide as a single drug and the 131I-labeled caerin 1.1 peptide for ATC. H&E and TUNEL staining was performed to detect dead cells in the tumor tissue sections. Results We found that caerin 1.1 arrested cells in the S phase to induce apoptosis and inhibited tumor growth to inhibit phosphorylation of Akt. In vivo, the iodine-131 (131I)-labeled caerin 1.1 peptide achieved better antitumor efficacy than radiotherapy alone and showed a good biosafety profile. Conclusions Our study demonstrates for the first time that the iodine-131 (131I)-labeled caerin 1.1 peptide can inhibit CAL-62 tumor growth and migration. The iodine-131 (131I)-labeled caerin 1.1 peptide, which represents a radioimmunotherapy strategy based on the combination of SIRT with a peptide–drug conjugate, could provide a treatment means for the radical cure of ATC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3