Numerical Investigation into the Effect of Splats and Pores on the Thermal Fracture of Air Plasma-Sprayed Thermal Barrier Coatings

Author:

Krishnasamy Jayaprakash,Ponnusami Sathiskumar A.,Turteltaub Sergio,van der Zwaag Sybrand

Abstract

Abstract The effect of splat interfaces on the fracture behavior of air plasma-sprayed thermal barrier coatings (APS-TBC) is analyzed using finite element modeling involving cohesive elements. A multiscale approach is adopted in which the explicitly resolved top coat microstructural features are embedded in a larger domain. Within the computational cell, splat interfaces are modeled as being located on a sinusoidal interface in combination with a random distribution of pores. Parametric studies are conducted for different splat interface waviness, spacing, pore volume fraction and fracture properties of the splat interface. The results are quantified in terms of crack nucleation temperature and total microcrack length. It is found that the amount of cracking in TBCs actually decreases with increased porosity up to a critical volume fraction. In contrast, the presence of splats is always detrimental to the TBC performance. This detrimental effect is reduced for the splat interfaces with high waviness and spacing compared to those with low waviness and spacing. The crack initiation temperature was found to be linearly dependent on the normal fracture properties of the splat interface. Insights derived from the numerical results aid in engineering the microstructure of practical TBC systems for improved resistance against thermal fracture.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Surfaces, Coatings and Films,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3