Abstract
AbstractThe size of container ships and the number of containers being transshipped at container terminals have steadily increased over the years. Consequently, it is important to make efficient use of the hinterland capacity. A concept that is used to do this is synchromodal transportation, in which at the very last moment the mode of transportation for a container is decided. Unfortunately, some deep-sea terminals are rather congested and it is unknown by the time the transportation plan is made how many containers can be loaded to and unloaded from a barge. Motivated by this, we study an operational planning problem with uncertainty that is faced by an inland terminal in the port of Amsterdam as a two-stage stochastic problem with recourse. We solve this problem using sample average approximation (SAA) and a fast heuristic using constraints based on stochastic programming (SP). The SAA method gives near-optimal solutions for small instances. For larger instances, the SP-based method is shown to be a good alternative because it is much faster than the SAA method and produces solutions that are less than 1% from the SAA solutions.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献