Zinc Oxide:Gold Nanoparticles (ZnO:Au NPs) Exhibited Antifungal Efficacy Against Aspergillus niger and Aspergillus candidus

Author:

Achilonu Conrad Chibunna,Kumar Promod,Swart H. C.,Roos W. D.,Marais Gert Johannes

Abstract

AbstractFungal pathogens are a major health issue that threatens the era of antifungal drugs commonly used in the treatment of infections. An effective approach of biosynthetic nanoparticles can be used as antifungal agents owing to their intrinsic features such as their simplicity, non-toxic, and physicochemical properties. Therefore, this study was aimed to molecularly ascertain Aspergillus species known to cause aspergillosis and investigate the potency of zinc oxide:gold nanoparticles (ZnO:Au NPs) against the fungal pathogens. Two Aspergillus strains retrieved with potato dextrose agar (PDA) culture media from commercial food products in South Africa were molecularly identified using calmodulin (CaM) gene region. DNA sequence phylogeny of the gene showed that the strains were A. niger and A. candidus. ZnO:Au (1%) NPs were synthesised and characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Two distinct peak plasmon bands for ZnO and ZnO:Au NPs were 390 nm and 565 nm, respectively. FE-SEM images demonstrated the presence of Au on the surface of ZnO nanoparticles in the ZnO:Au nanocomposites. The ZnO:Au NPs antifungal activity of 10 µg/mL and 50 µg/mL concentrations were evaluated against the two Aspergillus spp. ZnO:Au NPs at 50 µg/mL exhibited a maximum antifungal activity against A. candidus and A. niger, with zones of inhibition (ZoI) of 31.2 ± 0.15 mm and 25.0 ± 0.06, respectively. When the ZoI was observed by SEM, major morphological damages on the conidia were observed for both strains, indicating that the antifungal activity may have been enhanced by the ZnO:Au NPs. Therefore, due to these outstanding properties, ZnO:Au NPs can be utilised as potential antifungal agents to inhibit the proliferation of fungal pathogens.

Funder

University of the Free State

Publisher

Springer Science and Business Media LLC

Reference60 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3