Stress recovery of laminated non-prismatic beams under layerwise traction and body forces

Author:

Vilar M. M. S.ORCID,Hadjiloizi D. A.,Khaneh Masjedi P.,Weaver P. M.

Abstract

AbstractEmerging manufacturing technologies, including 3D printing and additive layer manufacturing, offer scope for making slender heterogeneous structures with complex geometry. Modern applications include tapered sandwich beams employed in the aeronautical industry, wind turbine blades and concrete beams used in construction. It is noteworthy that state-of-the-art closed form solutions for stresses are often excessively simple to be representative of real laminated tapered beams. For example, centroidal variation with respect to the neutral axis is neglected, and the transverse direct stress component is disregarded. Also, non-classical terms arise due to interactions between stiffness and external load distributions. Another drawback is that the external load is assumed to react uniformly through the cross-section in classical beam formulations, which is an inaccurate assumption for slender structures loaded on only a sub-section of the entire cross-section. To address these limitations, a simple and efficient yet accurate analytical stress recovery method is presented for laminated non-prismatic beams with arbitrary cross-sectional shapes under layerwise body forces and traction loads. Moreover, closed-form solutions are deduced for rectangular cross-sections. The proposed method invokes Cauchy stress equilibrium followed by implementing appropriate interfacial boundary conditions. The main novelties comprise the 2D transverse stress field recovery considering centroidal variation with respect to the neutral axis, application of layerwise external loads, and consideration of effects where stiffness and external load distributions differ. A state of plane stress under small linear-elastic strains is assumed, for cases where beam thickness taper is restricted to $$15^{\circ }$$ 15 . The model is validated by comparison with finite element analysis and relevant analytical formulations.

Funder

Science Foundation Ireland

University of Limerick

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3