PitSurgRT: real-time localization of critical anatomical structures in endoscopic pituitary surgery

Author:

Mao ZhehuaORCID,Das Adrito,Islam Mobarakol,Khan Danyal Z.,Williams Simon C.,Hanrahan John G.,Borg Anouk,Dorward Neil L.,Clarkson Matthew J.,Stoyanov Danail,Marcus Hani J.,Bano Sophia

Abstract

Abstract Purpose Endoscopic pituitary surgery entails navigating through the nasal cavity and sphenoid sinus to access the sella using an endoscope. This procedure is intricate due to the proximity of crucial anatomical structures (e.g. carotid arteries and optic nerves) to pituitary tumours, and any unintended damage can lead to severe complications including blindness and death. Intraoperative guidance during this surgery could support improved localization of the critical structures leading to reducing the risk of complications. Methods A deep learning network PitSurgRT is proposed for real-time localization of critical structures in endoscopic pituitary surgery. The network uses high-resolution net (HRNet) as a backbone with a multi-head for jointly localizing critical anatomical structures while segmenting larger structures simultaneously. Moreover, the trained model is optimized and accelerated by using TensorRT. Finally, the model predictions are shown to neurosurgeons, to test their guidance capabilities. Results Compared with the state-of-the-art method, our model significantly reduces the mean error in landmark detection of the critical structures from 138.76 to 54.40 pixels in a 1280 $$\times $$ × 720-pixel image. Furthermore, the semantic segmentation of the most critical structure, sella, is improved by 4.39% IoU. The inference speed of the accelerated model achieves 298 frames per second with floating-point-16 precision. In the study of 15 neurosurgeons, 88.67% of predictions are considered accurate enough for real-time guidance. Conclusion The results from the quantitative evaluation, real-time acceleration, and neurosurgeon study demonstrate the proposed method is highly promising in providing real-time intraoperative guidance of the critical anatomical structures in endoscopic pituitary surgery.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Super-resolution landmark detection networks for medical images;Computers in Biology and Medicine;2024-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3