Multimodal semi-supervised learning for online recognition of multi-granularity surgical workflows

Author:

Yamada YutaroORCID,Colan JacintoORCID,Davila AnaORCID,Hasegawa YasuhisaORCID

Abstract

AbstractPurpose Surgical workflow recognition is a challenging task that requires understanding multiple aspects of surgery, such as gestures, phases, and steps. However, most existing methods focus on single-task or single-modal models and rely on costly annotations for training. To address these limitations, we propose a novel semi-supervised learning approach that leverages multimodal data and self-supervision to create meaningful representations for various surgical tasks. Methods Our representation learning approach conducts two processes. In the first stage, time contrastive learning is used to learn spatiotemporal visual features from video data, without any labels. In the second stage, multimodal VAE fuses the visual features with kinematic data to obtain a shared representation, which is fed into recurrent neural networks for online recognition. Results Our method is evaluated on two datasets: JIGSAWS and MISAW. We confirmed that it achieved comparable or better performance in multi-granularity workflow recognition compared to fully supervised models specialized for each task. On the JIGSAWS Suturing dataset, we achieve a gesture recognition accuracy of 83.3%. In addition, our model is more efficient in annotation usage, as it can maintain high performance with only half of the labels. On the MISAW dataset, we achieve 84.0% AD-Accuracy in phase recognition and 56.8% AD-Accuracy in step recognition. Conclusion Our multimodal representation exhibits versatility across various surgical tasks and enhances annotation efficiency. This work has significant implications for real-time decision-making systems within the operating room.

Funder

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3