respiTrack: Patient-specific real-time respiratory tumor motion prediction using magnetic tracking

Author:

Özbek Yusuf,Bárdosi Zoltán,Freysinger Wolfgang

Abstract

Abstract Purpose An intraoperative real-time respiratory tumor motion prediction system with magnetic tracking technology is presented. Based on respiratory movements in different body regions, it provides patient and single/multiple tumor-specific prediction that facilitates the guiding of treatments. Methods A custom-built phantom patient model replicates the respiratory cycles similar to a human body, while the custom-built sensor holder concept is applied on the patient’s surface to find optimum sensor number and their best possible placement locations to use in real-time surgical navigation and motion prediction of internal tumors. Automatic marker localization applied to patient’s 4D-CT data, feature selection and Gaussian process regression algorithms enable off-line prediction in the preoperative phase to increase the accuracy of real-time prediction. Results Two evaluation methods with three different registration patterns (at fully/half inhaled and fully exhaled positions) were used quantitatively at all internal target positions in phantom: The statical method evaluates the accuracy by stopping simulated breathing and dynamic with continued breathing patterns. The overall root mean square error (RMS) for both methods was between $$0.32\pm 0.06~\hbox {mm}$$0.32±0.06mm and $$3.71\pm 0.79~\hbox {mm}$$3.71±0.79mm. The overall registration RMS error was $$0.6\pm 0.4~\hbox {mm}$$0.6±0.4mm. The best prediction errors were observed by registrations at half inhaled positions with minimum $$0.27\pm 0.02~\hbox {mm}$$0.27±0.02mm, maximum $$2.90\pm 0.72~\hbox {mm}$$2.90±0.72mm. The resulting accuracy satisfies most radiotherapy treatments or surgeries, e.g., for lung, liver, prostate and spine. Conclusion The built system is proposed to predict respiratory motions of internal structures in the body while the patient is breathing freely during treatment. The custom-built sensor holders are compatible with magnetic tracking. Our presented approach reduces known technological and human limitations of commonly used methods for physicians and patients.

Funder

Medizinische Universität Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3