Trocar localisation for robot-assisted vitreoretinal surgery

Author:

Birch JeremyORCID,Da Cruz Lyndon,Rhode Kawal,Bergeles Christos

Abstract

Abstract Purpose Robot-assisted vitreoretinal surgery provides precise and consistent operations on the back of the eye. To perform this safely, knowledge of the surgical instrument’s remote centre of motion (RCM) and the location of the insertion point into the eye (trocar) is required. This enables the robot to align both positions to pivot the instrument about the trocar, thus preventing any damaging lateral forces from being exerted. Methods Building on a system developed in previous work, this study presents a trocar localisation method that uses a micro-camera mounted on a vitreoretinal surgical forceps, to track two ArUco markers attached on either side of a trocar. The trocar position is the estimated midpoint between the markers. Results Experimental evaluation of the trocar localisation was conducted. Results showed an RMSE of 1.82 mm for the localisation of the markers and an RMSE of 1.24 mm for the trocar localisation. Conclusions The proposed camera-based trocar localisation presents reasonable consistency and accuracy and shows improved results compared to other current methods. Optimum accuracy for this application would necessitate a 1.4 mm absolute error margin, which corresponds to the trocar’s radius. The trocar localisation results are successfully found within this margin, yet the marker localisation would require further refinement to ensure consistency of localisation within the error margin. Further work will refine these position estimates and ensure the error stays consistently within this boundary.

Funder

Engineering and Physical Sciences Research Council

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extra-abdominal trocar and instrument detection for enhanced surgical workflow understanding;International Journal of Computer Assisted Radiology and Surgery;2024-07-15

2. Colibri5: Real-Time Monocular 5-DoF Trocar Pose Tracking for Robot-Assisted Vitreoretinal Surgery;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. Artificial Intelligence in Ophthalmic Surgery: Current Applications and Expectations;Clinical Ophthalmology;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3