Performance-aware programming for intraoperative intensity-based image registration on graphics processing units

Author:

Leong Martin C. W.,Lee Kit-Hang,Kwan Bowen P. Y.,Ng Yui-Lun,Liu Zhiyu,Navab Nassir,Luk Wayne,Kwok Ka-WaiORCID

Abstract

Abstract Purpose Intensity-based image registration has been proven essential in many applications accredited to its unparalleled ability to resolve image misalignments. However, long registration time for image realignment prohibits its use in intra-operative navigation systems. There has been much work on accelerating the registration process by improving the algorithm’s robustness, but the innate computation required by the registration algorithm has been unresolved. Methods Intensity-based registration methods involve operations with high arithmetic load and memory access demand, which supposes to be reduced by graphics processing units (GPUs). Although GPUs are widespread and affordable, there is a lack of open-source GPU implementations optimized for non-rigid image registration. This paper demonstrates performance-aware programming techniques, which involves systematic exploitation of GPU features, by implementing the diffeomorphic log-demons algorithm. Results By resolving the pinpointed computation bottlenecks on GPU, our implementation of diffeomorphic log-demons on Nvidia GTX Titan X GPU has achieved ~ 95 times speed-up compared to the CPU and registered a 1.3-M voxel image in 286 ms. Even for large 37-M voxel images, our implementation is able to register in 8.56 s, which attained ~ 258 times speed-up. Our solution involves effective employment of GPU computation units, memory, and data bandwidth to resolve computation bottlenecks. Conclusion The computation bottlenecks in diffeomorphic log-demons are pinpointed, analyzed, and resolved using various GPU performance-aware programming techniques. The proposed fast computation on basic image operations not only enhances the computation of diffeomorphic log-demons, but is also potentially extended to speed up many other intensity-based approaches. Our implementation is open-source on GitHub at https://bit.ly/2PYZxQz.

Funder

Research Grants Council (RGC) of Hong Kong

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning-based lung image registration: A review;Computers in Biology and Medicine;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3