Recurrent neural networks for generalization towards the vessel geometry in autonomous endovascular guidewire navigation in the aortic arch

Author:

Karstensen LennartORCID,Ritter Jacqueline,Hatzl JohannesORCID,Ernst FlorisORCID,Langejürgen Jens,Uhl Christian,Mathis-Ullrich FranziskaORCID

Abstract

Abstract Purpose Endovascular intervention is the state-of-the-art treatment for common cardiovascular diseases, such as heart attack and stroke. Automation of the procedure may improve the working conditions of physicians and provide high-quality care to patients in remote areas, posing a major impact on overall treatment quality. However, this requires the adaption to individual patient anatomies, which currently poses an unsolved challenge. Methods This work investigates an endovascular guidewire controller architecture based on recurrent neural networks. The controller is evaluated in-silico on its ability to adapt to new vessel geometries when navigating through the aortic arch. The controller’s generalization capabilities are examined by reducing the number of variations seen during training. For this purpose, an endovascular simulation environment is introduced, which allows guidewire navigation in a parametrizable aortic arch. Results The recurrent controller achieves a higher navigation success rate of 75.0% after 29,200 interventions compared to 71.6% after 156,800 interventions for a feedforward controller. Furthermore, the recurrent controller generalizes to previously unseen aortic arches and is robust towards size changes of the aortic arch. Being trained on 2048 aortic arch geometries gives the same results as being trained with full variation when evaluated on 1000 different geometries. For interpolation a gap of 30% of the scaling range and for extrapolation additional 10% of the scaling range can be navigated successfully. Conclusion Adaption to new vessel geometries is essential in the navigation of endovascular instruments. Therefore, the intrinsic generalization to new vessel geometries poses an essential step towards autonomous endovascular robotics.

Funder

Ministry of Economics, Labor and Tourism Baden-Württemberg

Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging,General Medicine,Surgery,Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous navigation of catheters and guidewires in mechanical thrombectomy using inverse reinforcement learning;International Journal of Computer Assisted Radiology and Surgery;2024-06-17

2. A zero-shot reinforcement learning strategy for autonomous guidewire navigation;International Journal of Computer Assisted Radiology and Surgery;2024-04-16

3. Dexterous helical magnetic robot for improved endovascular access;Science Robotics;2024-02-14

4. Endovascular Microrobotics for Neurointervention;Annual Review of Control, Robotics, and Autonomous Systems;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3