Circ_0005576 Exerts an Oncogenic Role in Cervical Cancer via miR-1305-Dependent Regulation of PAIP1

Author:

Wang Yajing,Du Fang,Xie Zongyuan,Lai Junhao,Li Yuanjie,Xu Yongping,Tong RuiORCID

Abstract

AbstractCervical cancer (CC) is a leading cause of high morbidity and mortality in women worldwide. Circular RNAs (circRNAs) are considered to be essential regulators of various cancers, including CC. The purpose of this study was to investigate the role and mechanism of circ_0005576 in CC progression. The levels of circ_0005576, miR-1305, and poly(A)-binding protein-interacting protein 1 (PAIP1) were detected by quantitative real-time PCR (qRT-PCR) or western blot assay. The stability and location of circ_0005576 were determined by ribonuclease R (RNase R) assay and subcellular fractionation distribution assay, respectively. Cell proliferation was evaluated by CCK-8 assay, EDU incorporation assay, and colony formation assay. Cell migration and invasion were assessed by transwell assay. The interactions between miR-1305 and circ_0005576 or PAIP1 were validated by dual-luciferase reporter assay. The protein expression of cyclin D1, vimentin, and matrix metallopeptidase 9 (MMP9) was tested by western blot. Moreover, mice xenograft models were constructed to analyze tumor growth in vivo. Circ_0005576 and PAIP1 were upregulated, while miR-1305 was downregulated in CC tissues and cells. Circ_0005576 was a stable circRNA that was mainly distributed in the cytoplasm of cells. Knockdown of circ_0005576 suppressed the proliferation, migration, and invasion of CC cells, while the silence of miR-1305 facilitated the development of CC cells. Meanwhile, circ_0005576 could sponge miR-1305 to promote PAIP1 expression. Furthermore, PAIP1 overexpression relieved the influence of circ_0005576 silence on the growth of CC cells. Additionally, circ_0005576 silence hindered CC tumor growth in vivo. Circ_0005576 depletion suppressed tumor development in CC by regulating the miR-1305/PAIP1 axis, suggesting that circ_0005576 might be a potential biomarker for CC treatment.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3