Electro-assisted filtration of microfibrillated cellulose: the impact of the degree of fibrillation

Author:

Hjorth AnnaORCID,Vøllo Kristiansen Anna,Øvrebø Hans Henrik,Theliander HansORCID

Abstract

AbstractEfficient dewatering is necessary to achieve an economically sustainable large-scale production of microfibrillated cellulose (MFC) because the low solids content of the final product (< 3 wt.%) results in high costs related to transportation and storage, and problems for products with water incompatibility. Mechanical dewatering is preferred to thermal drying due to its lower energy demand, but MFC has a very high filtration resistance, which implies that an excessive filter area is necessary. Thus, to improve the dewatering, electro-assisted filtration may be used. In this study a bench-scale dead-end filter press was modified and the electro-assisted filtration of MFC, with two degrees of fibrillation, was investigated. The impact of the degree of fibrillation was clear when either pressure or electric field were applied separately. It was more challenging to dewater MFC with a higher degree of fibrillation using conventional filtration due to a greater surface area being subjected to the liquid flow. The opposite was found when using an electric field alone: the more fibrillated material has a higher surface charge and thereby is impacted more by the electric field. A combination of pressure and electric field resulted in a greatly improved dewatering rate, but no significant difference could be observed between the two qualities. After dewatering, the water retention value was slightly decreased, but the material still showed a gel-like behaviour, although the network strength was slightly reduced, as seen by a reduction in yield stress, storage and loss moduli. This was plausibly due to a decrease in the surface area and/or deformed network.

Funder

Vetenskapsrådet

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3