Synthesis by carbonate aminolysis and chiral recognition ability of cellulose 2,3-bis(3,5-dimethylphenyl carbamate)-6-(α-phenylethyl carbamate) selectors

Author:

Bui Cuong VietORCID,Rosenau ThomasORCID,Hettegger HubertORCID

Abstract

Abstract Novel chiral selectors based on cellulose 2,3-bis(3,5-dimethylphenyl carbamate)-6-(α-phenylethyl carbamate) were regioselectively synthesized by carbonate aminolysis and isocyanate chemistry. By oxycarbonylation with phenyl chloroformate, carbamoylation with 3,5-dimethylphenyl isocyanate, and subsequent aminolysis of the previously introduced reactive carbonate moiety at C6 with enantiopure (R)-or (S)-α-phenylethylamine, chiral selectors have been obtained, which regioselectively carry two different phenyl carbamate substituents. The cellulose derivatives were comprehensively characterized by ATR-FTIR, solid-state NMR, GPC, and elemental analysis. In parallel, 3-aminopropyl-functionalized silica gel as an inert carrier material for the chiral selectors was prepared and the obtained coated-type chiral stationary phases were characterized by both solid-state 29Si NMR, 13C NMR, and elemental analysis. The enantioseparation performance of the chiral selectors was studied and compared to cellulose tris(3,5-dimethylphenyl carbamate) as a reference. With this protocol in hand, certain shortcomings of conventional approaches towards the regioselective synthesis of polysaccharide-based chiral selectors were overcome, such as the limitation to standard isocyanate reagents, being able to apply now the whole wealth of commercially available (chiral) primary and also secondary alkylamines instead. Graphical abstract

Funder

OeAD-GmbH

Universität für Bodenkultur Wien

NÖ Forschungs- und Bildungsges.m.b.H.

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3