Towards regenerated cellulose fibers with high toughness

Author:

Moriam Kaniz,Sawada Daisuke,Nieminen Kaarlo,Hummel Michael,Ma Yibo,Rissanen Marja,Sixta HerbertORCID

Abstract

AbstractThe production of sustainable and high-performance fabrics requires high mechanical strength of the individual (staple) fibers. Although Ioncell fibers already exhibit higher fiber strength than commercial man-made cellulose fibers or cotton fibers, we further aimed to increase both strength and toughness to gradually approach synthetic fibers in these properties. Decisive factors for the achievable mechanical properties of the fibers were the pulp purity, the cellulose concentration in the spinning solution and length-to-diameter (L/D) ratio of the cylindrical part of the spinneret. The absence of low molecular weight fractions in combination with an increased average molecular weight had the highest impact on the achievement of both high strength and toughness. Using a spinneret with a high L/D ratio, it was possible to spin Ioncell fibers with a tensile strength of 925 MPa (61.5 cN/tex) and a modulus of toughness of 83.3 MPa (55.5 J/g). According to a fluid dynamic simulation, uniformly longer molecular cellulose chains in combination with a longer cylindrical capillary promoted an effective alignment of the cellulose molecules inside the spinneret capillary before entering the airgap, thus creating the conditions for a simultaneous increase in tensile strength and elongation i.e. toughness of the fiber. Mechanistically, high fiber toughness is caused by the structural parameters in longitudinal direction, in particular by a higher tilt angle, a longer periodicity of the lamellar plane and lower micro void orientation. In summary, we have developed lyocell-type fibers with high strength and toughness, which can potentially be used as a surrogate for synthetic fibers. Graphic abstract

Funder

Walter Ahlströmin Säätiö

Academy of Finland

Puunjalostusinsinöörit

FinnCERES

Tekniikan Edistämissäätiö

Aalto University

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3