The role of carboxyl and cationic groups in low-level cationised cellulose fibres investigated by zeta potential and sorption studies

Author:

Netzer FelixORCID,Manian Avinash P.ORCID,Bechtold ThomasORCID,Pham TungORCID

Abstract

AbstractThe anionic nature of both cellulose fibres and reactive dyes prevents substantial exhaustion of dye from the dyebath, which is at neutral pH before alkali is added to initiate dye fixation. Conventionally, salt is added to minimize the electrostatic repulsions that interfere with dye sorption, but that increases salt loads in effluents. An alternative is to affix cationic agents on the cellulose to overcome the inherent anionic charge, but that has generally been observed to result in uneven dye sorption. The focus of investigations in this work is to examine the influence of the ratio of charges on cellulose (of affixed cationic charges to inherent anionic charges) on the extents and evenness of dye sorption. The cationisation agent 3-chloro-2-hydroxypropyl-N,N,N-trimethylammonium chloride (CHPTAC) was grafted on loose viscose fibres to yield 12 to 185 mmol kg−1 cationic group content on the fibre that exhibited an inherent carboxyl group content of 68 mmol kg−1. Three different dyes (of varying molecular sizes and anionic group content) were employed for examination of sorption profiles. The results from both zeta potential measurements and dye sorption profiles showed evidence of limited dye uptake until the cationic group content in fibres exceeded that of the inherent carboxyl groups. Thereafter, an uptick in dye sorption was observed, with dye sorption levels increasing with rise in degree of cationisation. There were differences between the dyes in their degrees of sorption, which appear correlated with their molecular sizes.

Funder

Österreichische Forschungsförderungsgesellschaft

University of Innsbruck and Medical University of Innsbruck

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3