Nanoprecipitation to produce hydrophobic cellulose nanospheres for water-in-oil Pickering emulsions

Author:

Tiban Anrango Bryan Andres,Naiya Mohinder Maheshbhai,Van Dongen Josh,Matich Olivia,Whitby Catherine P.,Chen Jack L.-Y.

Abstract

AbstractIn recent years, there has been growing interest in replacing petroleum-based water-in-oil (W/O) emulsifiers with sustainable and less toxic natural materials. Pickering emulsifiers are considered well-suited candidates due to their high interfacial activity and the ability to form emulsions with long-term stability. However, only sporadic examples of natural materials have been considered as inverse Pickering emulsifiers. This study describes the synthesis of a series of hydrophobic cellulose nanospheres by bulk modification with acyl groups of different chain lengths followed by nanoprecipitation, and their application as inverse emulsifiers. Modification with acyl groups of longer chain length (C16, C18) afforded lower degrees of substitution, but resulted in greater thermal stability than groups with shorter acyl chains (C12, C14). Formation of nanospheres with low aspect ratios and narrow size distributions required low initial cellulose concentrations (< 1% w/v), high volumetric ratios of antisolvent to solvent (> 10:1), and slow addition rates (< 20 mL/h). The modified cellulose nanospheres were able to reduce the interfacial tension between water and hexane from 45.8 mN/m to 31.1 mN/m, with an effect that increased with the number of carbons in the added acyl chains. The stearate-modified nanospheres exhibited superhydrophobic behavior, showing a contact angle of 156° ± 4° with water, and demonstrated emulsification performance comparable to the commonly used molecular surfactant sorbitan stearate. Our findings suggest that hydrophobically modified cellulose nanospheres have the potential to be a bio-derived alternative to traditional molecular W/O emulsifiers. Graphical Abstract

Funder

Callaghan Innovation, National Science Challenge, SfTI Seed Project

New Zealand Ministry of Business, Innovation & Employment, Endeavour Fund, Smart Ideas

Callaghan Innovation, National Science Challenge, Impact Acceleration Award

Auckland University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3